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A numerical and experimental assessment of the compression test in the split Hopkinson 
pressure bar (SHPB) has been made. The DYNA2D finite element code was employed in the 
numerical part. The aim of the work was to establish the influence of an important reduction 
in the specimen diameter on the results. To this end, several numerical experiments were 
carried out with different diameters. Experimental measurements using the SHPB technique 
were also performed. The material studied was the 7017 T73 aluminium alloy. In the 
simulations, stress histories were registered at different places in the incident and output 
bars, as well as in the test specimen. Numerical simulations show important three- 
dimensional effects in the SHPB, increasing for smaller diameters. Experiments show the 
same tendencies evinced by the numerical simulation. Care must be taken to minimize them 
to achieve the desirable uniaxial stress condition on the specimen. 

1. In troduct ion  
Since the development of the Kolsky apparatus (also 
called the split Hopkinson pressure bar, SHPB) sev- 
eral decades ago [11, such a device has become widely 
used for testing the behaviour of materials at high 
rates of strain. As is well-known, in this testing proced- 
ure, a cylindrical specimen is placed between two long 
elastic bars. At the free end of the first one, called the 
incident bar, a stress pulse is applied by either an 
explosive or the impact of a projectile. The generated 
compression pulse propagates along the incident bar, 
and a part of it is reflected at the bar/specimen inter- 
face, whereas the residual part is transmitted through 
the specimen to the second bar (called the output bar). 
Because both bars behave elastically, measurements of 
strains or displacements in the bars may provide the 
dynamic stress-strain curve of the specimen material 
[1,2]. The basic assumptions of the test are (a) the 
bars/specimen system is in a uni-dimensional stress 
state, and (b) the strain distribution in the specimen is 
homogeneous. Results of the application of this 
method to estimate the dynamic properties of metallic 
materials are found in the open literature [3-61. 

In the past, efforts have been devoted to estimate 
the influence of factors such as friction or inertia on 
test results [7-9]. It is recognized that the friction 
effects decrease as the length/diameter ratio increases. 
On the other hand, inertial effects have a more com- 
plicated dependence on test parameters. Davies and 
Hunter [71 used an appealing experimental measuring 
technique, where contributions of axial and radial 
inertia have opposite signs, and concluded that for 
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a slenderness ratio (or length to diameter ratio) equal 

to x f ~  (for an incompressible material), both terms 
annihilate and inertia effects may be ignored. How- 
ever, when the strain rate is not constant during the 
test, the inertia effects may increase substantially for 
larger values of the slenderness ratio. Thus, a compro- 
mise value for the length-diameter ratio is required, 
which in a first trial may be around 0.5 [8]. The 
influence of the shape of the stress pulse on test results 
has also been demonstrated, and a trapezoidal shape 
has been found to be more appropriate than a triangu- 
lar one [10,111. Jashman [101 found that although for 
both types of pulse the elastic modulus was lower than 
the reference one, the plastic modulus was better 
approximated by the trapezoidal pulse. Similar results 
were found by Buchar et al. [11]. In some simulated 
experiments, these authors also found that an increase 
in specimen length may give a better approximation to 
the actual mechanical behaviour of the material [11]. 
This result disagrees with previous results obtained by 
Bertholf and Karnes [81, but the discrepancy may be 
associated with different simulation conditions in the 
numerical analysis. Recently, the importance of the 
dispersion effects has also been shown, and attempts 
to overcome this problem have been made [12,13]. 
Such dispersion corrections are based on analytical 
solutions of longitudinal wave propagation in an infi- 
nitely long cylinder obtained by a Pochhammer- 
Chree analysis, and by assuming that a particular 
vibration mode predominates during the test. How- 
ever, this solution may not be exact for finite cylinders 
(in which case will be actually applied), because it does 
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not fulfil the boundary conditions at the end of the 
bars. 

In this work, the compression test in the split Hop- 
kinson pressure bar was numerically and experi- 
mentally studied. The DYNA2D commercial 
lagrangian code for dynamic problems was used in 
the numerical part [14]. With this tool, experiments 
performed with several specimen sizes are numerically 
simulated. Detailed time histories of stresses and dis- 
placements at different places are recorded. Then the 
estimated stress-strain behaviour of the specimen is 
compared to that previously assumed and the influ- 
ence of specimen geometry is investigated. This work 
tries to estimate the effect of an important reduction in 
the specimen diameter (bar diameter held constant), 
because some researchers reduce the specimen dia- 
meter to reach higher and more constant strain rates. 
Experimental tests performed i n 7017 T73 aluminium 
alloy show the same tendencies envisaged in the nu- 
merical simulations. It is concluded that a one-dimen- 
sional stress-state is very difficult to achieve in practice 
and the three-dimensional effects are increased when 
the specimen diameter relative to the bar diameter is 
reduced. Furthermore, the specimen diameter cannot 
be reduced beyond a certain limit, below which a de- 
parture from the actual material response is evident. 

2. Experimental procedure 
Dynamic compression tests were made in the SHPB, 
for a 7017 T73 aluminium alloy. This alloy was se- 
lected because its mechanical behaviour has been 
found to be nearly independent upon the strain rate, 
which simplifies the comparison between analysis and 
experiment. Chemical composition of this alloy is 
5.1% Zn, 2.4% Mg, 0.3% Fe, 0.16% Si, 0.12% Cu, 
0.22 % Mn, 0.16 % Cr, 0.12 % Zr, A1 balance. This ma- 
terial has a Young's modulus of 71 GPa. Furthermore, 
its simple tension test properties in static conditions 
are an elastic limit of 450 MPa, a tensile strength of 
499 MPa, and a rupture strain of 12~ in 50 mm. 

Experiments with 21.6, 14, 10 and 7 mm diameter 
specimens with a slenderness ratio lid = 0.5, were per- 
formed. Contact interfaces were lubricated with 
S2Mo, giving very good lubrication properties. The 
impact velocity of the projectile was about 
15-16 m s - t ,  giving rise to a compression wave with 
a peak value near 300 MPa. 

In the experiments, the strain histories in the bars 
corresponding to the incident, e~, reflected, ~, and 
transmitted wave, at (see Fig. 1), were determined. The 
stresses, or, and velocities, v, were estimated at the end 
of the bars, from the well-known expressions for the 
split Hopkinson pressure bar theory 

{3.in p = E ( s  qt_ ar ) (1)  

CYo~t = E ~ t  (2) 

v~. o = - c ( a ~ -  a,) (3) 

rout = - c a t  (4) 
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Figure 1 Experimental values of the incident, reflected and trans- 
mitted waves. 
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Figure 2 Experimental values of the ( - - )  input and ( - - )  output 
bar stresses. 
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Figure 3 Experimental stress-strain curves for different diameters: 
( - - )  14 ram, ( - - - )  10 ram, (---) 7 mm. 

subscripts refer to the input (inp) and output (out) 
bars, respectively. Finally, stress, ~s, strain rate, ~, and 
strain, a, in the specimen are computed as 

(S 
EAb 

- -  A b  ((3"inp J r  CYout) - -  (1~ i -~- a r -~- a t )  ( 5 )  
2As 2As 

where E is Young's modulus of the bars and c is the 
propagation velocity of the compression waves. The 

__ /)out - -  Vinp __ C 
1 1 ( a t  -~ a r  - -  ~;i)  (6) 
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Figure 4 Experimental strain rate-strain curves for different dia- 
meters. 
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Figure 6 Schematic illustrations of the bars system and stress pulse. 
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Figure 5 Effect of lubrication in the experimental stress strain 
curves. ( ) unlubricated, ( ) lubricated. 

and 

f l  ~ dt (7) 8 

where I is the specimen length, and Au and As are the 
cross-sectional areas of bars and specimen, respect- 
ively. Equations 5-7 correspond to the traditional 
procedure. Nevertheless, this work supports the 
tendency to use only the output bar stress to calculate 
the stress in the specimen. This is reasonable because 
the input bar stress is affected by a higher number 
of spureous oscillations. The histories of both 
stresses versus time are plotted in Fig. 2, where 
the problem is clearly shown. Therefore, rather 
than employing Equation 5, the stress in the specimen 
computed as 

Ab E 
a = As ~t (8) 

Fig. 3 depicts the true stress-strain curves determined 
from the experiments for the different diameters 
selected. For a specimen diameter of 21.6 mm, mater- 
ial remained in the elastic regime. It is clearly seen in 
such a figure that the diameter is reduced to 7 mm, 
although a larger plastic strain is reached, larger inac- 
curacies in the stress-strain curve are observed. More- 
over, elastic strains are overestimated for the smaller 
diameters. Fig. 4 shows the strain-rate histories in 
the tested specimens for the different diameters. It is 

4722 

obvious that the strain rate during the tests increases 
as the specimen diameter decreases. Fig. 5 allows com- 
parison of the true stress-strain curves obtained with 
and without lubrication. 

3. Description of the numerical analysis 
The DYNA2D finite element code was employed to 
analyse the dynamic response of two bars of 1.0 m 
length and 22.0 mm diameter, modelled by means of 
2107 nodes and 1800 quadrilateral elements (300 
along the axial direction and 6 along the radius). 
Between the bars, specimens with a constant 
length/diameter ratio of 0.5 are modelled using 169 
nodes and 144 quadrilateral elements (12 along the 
axial direction and 12 along the radius). The specimen 
diameters analysed are 14, 10 and 7 mm. The whole 
problem involves 4383 nodes and 3744 elements. Ow- 
ing to the axial symmetry of the system, it is necessary 
to model only one-half of the diametral plane of the 
specimen/bars system. The behaviour of the specimen 
material corresponds to that of the 7017 T73 alumi- 
nium alloy. It is assumed to be bilinear elastic-plastic 
and strain-rate independent. Values used are 
a Young's modulus of 71 GPa, a yield stress of 
500 MPa, a stress-strain slope in the plastic region of 
0.62 GPa and a density of 2700 kg m-  3. The material 
of the bars was assumed fully elastic, with a Young's 
modulus of 202 GPa and a density of 7850 kgm -3, 
typical values of steel. A trapezoidal stress pulse was 
applied at the end of the incident bar. Its total dura- 
tion was 200 ~ts, with a rise time and a descent time 
both equal to 20 gs. The peak stress value was 
400 MPa. Schematic illustrations of the bars/specimen 
system and stress pulse are illustrated in Fig. 6. 

Spurious numerical oscillations are always present 
in modelling stress-wave propagation. To circumvent 
this problem, the code uses an artificial dissipative 
term added to the pressure and composed of a linear 
and a quadratic term in the velocity gradient compo- 
nents [15,16]. In this manner, with a suitable choice 
of the pertinent coefficients, artificial numerical os- 
cillations are damped out, whereas the physical 
components of the solution remain unaffected. The 
introduction of damping, through artificial viscosity, 
may produce some distortion of the solution, but 
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Figure 7 Numerical true stress true strain curve for 14 mm dia- 
meter: ( -) assumed, ( ) obtained. 
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Figure 8 Numerical true stress true strain curve for 10 mm dia- 
meter: ( - - - )  assumed, ( ) obtained. 
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Figure 9 Numerical true stress-true strain curve for 7 mm dia- 
meter: ( -) assumed, ( - - )  obtained. 

this effect is reduced to a minimum with an adequate 
selection of the viscosity parameters, according to 
well-established criteria. In our case, a linear-term 
coefficient of 0.3 and a quadratic-term coefficient of 
2.0 were used. To check the appropriateness of the 
values chosen, records of stress versus time in various 
positions of the bar were compared. Little differences 
between these pulses can be observed, showing that 
the artificial viscosity terms do not affect the main 
(physical) terms of the solution. 

4. Numer ica l  results 
In Figs 7-9 the true stress-true strain curves obtained 
from the numerical computations, by using the same 
equations as in the experiments, are shown for differ- 
ent bar diameters. Such curves are also compared with 
the bilinear stress strain curve assumed for the speci- 
men material in the numerical analysis. The curves 
obtained from the calculations for the 14 and 10 mm 
diameters, provide a relatively good approximation to 
the assumed material behaviour in all cases, although 
for the smallest diameters, the curves exhibit a number 
of oscillations of a relatively high amplitude. In all 
cases, the approximation is good whenever the plastic 
strain exceeds a value of about 0.01. As the specimen 
diameter decreases, the amplitude of the oscillations 
increases, thus resulting in some uncertainties 
in the estimation of the stress-strain curve. This is 
particularly true for the 7 mm diameter specimen, 
where the amplitude of the oscillations is excessive 
to obtain a reliable estimation of the stress-strain 
curve. Moreover, smaller stress values for the 
plastic range than the assumed behaviour are 
evident from Fig. 9. It is also derived from the calcu- 
lations that the material hardening is masked using 
this diameter. 

Common to all the specimen diameters analysed 
is the overestimation in the elastic strain; 
consequently, the elastic modulus computed is 
much lower than the reference one. Obviously, total 
deformation is higher when the specimen diameter is 
reduced. 

The strain rate is not constant during the whole 
test. This is very common in compression tests 
because there are two factors reducing the strain 
rate, namely, material hardening and the increase 
in the specimen cross-sectional area during the 
deformation process. However, it is clear from Fig. 4 
that the strain rate is much higher for the smaller 
diameters. 

Another important difference can be derived from 
the results of specimens of different sizes, namely, an 
increase in the initial time interval where the strain 
rate increases very fast, from zero to the peak value. 
This region is wider as the specimen diameter in- 
creases. In these cases the maximum strain rate is 
reached later, that is, for higher plastic strain values. 
In all the cases studied, it is not possible to give 
a definite value for the strain rate. These results are 
also confirmed if the material conditions used in the 
numerical model are changed. A second numerical 
analysis has been carried out with the following 
material properties: bilinear elastic-plastic and 
strain-rate independent material with a Young's 
modulus of 71GPa ,  a yield stress of 300MPa,  
a stress-strain slope in the plastic region of 2 GPa  and 
a density of 2700 kg m -3. The same tendencies were 
observed. 

5. Discussion and conclusion 
Although the stress-strain relationship obtained with 
the SHPB is, in general, in good agreement with the 
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Figure 10 Numerical  shear stress histories at the axis of symmetry 
of the specimen (D = 7 ram): (a) close to the input bar, (b) middle of 
the specimen, (c) close to the output  bar. 

actual behaviour of the material at high rates of strain, 
it is essential to take into account the limitations 
associated with this type of test, as the present work 
has made evident. 

First of all, the strain is overestimated in the 
elastic region. This may be a consequence of the 
influence of the bar stiffness in the calculations. 
In the actual experiments this effect is enhanced by 
problems associated with the surface bars/specimen 
contact. Thus, a reliable measurement of the elastic 
modulus can be hardly made by means of this 
technique, unless the strain be directly measured 
in the specimen, either by optic systems or by sticking 
strain gauges on the specimen surface. However, 
this strain overestimation has very little influence 
in the plastic region, where total strain values are 
much higher. 

As mentioned in Section 1, the main objective of this 
work was to evaluate the effects on the test results of 
an important reduction in the specimen diameter, 
while the bar diameter is kept constant, and also to 
ascertain whether this reduction is acceptable as 
a method for achieving higher strain rates. Con- 
clusions, according to both modelling and experiment, 
are positive in the sense that smaller diameters can 
also be used in good agreement with actual material 
behaviour, but several aspects are important. First, the 
number of oscillations in the stress-strain curve in- 
creases considerably when the specimen diameter is 
reduced, probably due to an increase in the triaxiality 
of the stress state in the bars for smaller diameters. 
Part of the bar end is free, and thus is in zero-stress 
condition. Therefore, differences between the bar axis 
and its lateral surface, near the end, will be higher if 
the specimen diameter is reduced. To illustrate this, 
Fig. 10 shows results from the 7 mm diameter speci- 
men. The shear stress histories obtained from the 
numerical analysis at the axis of symmetry of the 
specimen, at points in contact with the input bar, in 
the middle of the specimen and in contact with the 
output bar, are plotted. It is appreciated that peak 
shear stress values of 120 MPa (about 24% of the yield 
stress) are reached in both cases. Thus, deviations 
from the assumed one-dimensional theory should not 
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be surprising (these shear stresses do not appear in the 
other diameters). Moreover, the non-uniformity 
in the bar's stress will increase the number and 
also the magnitude of the oscillations in the recorded 
signal. Second, the strain rate is higher for smaller 
diameters, because more energy is available to 
deform the material, and it is also more constant, 
an advantage because the aim is to obtain the 
mechanical properties of the material at a definite 
value of the strain rate. If this quantity is variable 
during the test, it is not possible to define an approx- 
imate strain rate for the stress-strain curve obtained. 
This could lead to the conclusion that it is convenient 
to reduce the specimen diameter. However, it 
is instructive to analyse the variation of the strain 
rate with the strain. During the initial region of defor- 
mation, strain rate changes very rapidly up to its 
maximum value, and then decreases more slowly. For 
strains lower than that of the maximum strain rate, the 
results cannot be used, owing to the rapid change in 
the strain rate. If the initial region is compared for 
different specimen diameters, it can be concluded that 
it increases when the specimen diameter is reduced. 
Therefore, small specimens give higher strains and 
strain rates, but the unreliable initial region is en- 
larged. 

One of the basic assumptions in this test is the 
equilibrium condition, which means that forces 
at both ends of the input and output bars must be 
equal. The first one is calculated through the 
addition of incident and reflected strain pulses. 
Abnormal oscillations can arise from inadequate ad- 
justment of these two pulses, without a true relation 
with the material behaviour. Although the agreement 
between both forces is enough to ensure the equilib- 
rium condition, it is advisable to use the output bar for 
determining the stress in the specimen, overcoming 
the irregularities. 

As a final conclusion, and unless the material 
is very soft, and almost without strain hardening, 
specimens with diameters appreciably smaller 
than those of the bars are recommended, provided 
that a lower bound is not exceeded (each researcher 
should calibrate his own test). This is because 
the specimens similar in size to the bars do not 
provide constant strain rate during the test, and 
the improvement in the elastic region is insufficient 
compensation. 
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